81国产精品久久久久久久久久,午夜一区二区三区视频,国产伦精品一区二区免费,一区二区三区网址,亚洲欧美日韩精品永久在线,中文字幕国产一区二区三区,精品国产高清一区二区三区

高中數學(xué)教學(xué)設計

時(shí)間:2023-05-01 10:02:56 教學(xué)設計 我要投稿

高中數學(xué)教學(xué)設計(集錦15篇)

  作為一名優(yōu)秀的教育工作者,通常會(huì )被要求編寫(xiě)教學(xué)設計,教學(xué)設計是教育技術(shù)的組成部分,它的功能在于運用系統方法設計教學(xué)過(guò)程,使之成為一種具有操作性的程序。寫(xiě)教學(xué)設計需要注意哪些格式呢?以下是小編幫大家整理的高中數學(xué)教學(xué)設計,僅供參考,大家一起來(lái)看看吧。

高中數學(xué)教學(xué)設計(集錦15篇)

高中數學(xué)教學(xué)設計1

  提出問(wèn)題:

  新課程認為知識不是單方面通過(guò)教師傳授得到的,而是學(xué)生在一定的情境中,運用已有的學(xué)習經(jīng)驗,并通過(guò)與他人(教師指導和同學(xué)的幫助)協(xié)作,主動(dòng)建構而獲得的。它強調以學(xué)生為中心,視學(xué)生為認知的主體,教師只對學(xué)生的意義建構起幫助和促進(jìn)作用。通過(guò)多年教學(xué)實(shí)踐和對新課程的認識,我認為若遵循這個(gè)原則進(jìn)行數學(xué)課堂教學(xué),學(xué)生的學(xué)習將是一種高效的活動(dòng)。

  教材中的地位:

  本節內容是在指數范圍擴充到實(shí)數的基礎上引入指數函數的,而指數函數是高中研究的第一種具體函數。是在初中已經(jīng)初步探討了正比例函數,反比例函數,一次函數,二次函數的圖像和性質(zhì)的基礎上,在進(jìn)一步學(xué)習了函數的概念及有關(guān)性質(zhì)的前提下,去研究學(xué)習的。重點(diǎn)是指數函數的圖像及性質(zhì),難點(diǎn)在于弄清楚底數a對于函數變化的影響。這節課主要是學(xué)生利用描點(diǎn)法畫(huà)出函數的圖像,并描述出函數的圖像特征,從而指出函數的性質(zhì)。使學(xué)生從形到數的熟悉,體驗研究函數的過(guò)程與思路,實(shí)現意識的深化。

  設計背景:

  在新教材的教學(xué)中,我慢慢體會(huì )到新教材滲透的、螺旋式上升的基本理念,知識點(diǎn)的形成過(guò)程經(jīng)歷從具體的實(shí)例引入,形成概念,再次運用于實(shí)際問(wèn)題或具體數學(xué)問(wèn)題的過(guò)程,它的應用性,實(shí)用性更明顯的體現出來(lái)。學(xué)數學(xué)重在培養學(xué)生的思維品質(zhì),經(jīng)過(guò)多年的數學(xué)學(xué)習,學(xué)生還是害怕學(xué)數學(xué),尤其高中的數學(xué),它對于學(xué)生來(lái)說(shuō)顯得很抽象。所以如果再讓讓學(xué)生感到數學(xué)離我們的生活太遠,那么將很難激發(fā)他們的學(xué)習愛(ài)好。所以在教學(xué)中我盡力抓住知識的本質(zhì),以實(shí)際問(wèn)題引入新知識。另外,就本章來(lái)說(shuō),指數函數是學(xué)習函數概念及基本性質(zhì)之后研究的.第一個(gè)重要的函數,讓學(xué)生學(xué)會(huì )研究一個(gè)新的具體函數的方法比學(xué)會(huì )本身的知識更重要。在這個(gè)過(guò)程中,所有的知識都是生疏的,在大腦中沒(méi)有形成基本的框架結構,需要老師的引導,使他們逐漸建立。數學(xué)中任何知識的形成都體現出它的思想與方法,因而授課中注重讓學(xué)生領(lǐng)悟其中的思想,運用其中的方法去學(xué)習新的知識,是非常重要的。

  教學(xué)目標:

  一、知識:

  理解指數函數的定義,能初步把握指數函數的圖像,性質(zhì)及其簡(jiǎn)單應用。

  二、過(guò)程與方法:

  由實(shí)例引入指數函數的概念,利用描點(diǎn)作圖的方法做出指數函數的圖像,(有條件的話(huà)借助計算機演示驗證指數函數圖像)由圖像研究指數函數的性質(zhì)。利用性質(zhì)解決實(shí)際問(wèn)題。

  三、能力:

  1.通過(guò)指數函數的圖像和性質(zhì)的研究,培養學(xué)生觀(guān)察,分析和歸納的能力,進(jìn)一步體會(huì )數形結合的思想方法。

  2.通過(guò)對指數函數的研究,使學(xué)生能把握函數研究的基本方法。

  教學(xué)過(guò)程:

  由實(shí)際問(wèn)題引入:

  問(wèn)題1:某種細胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),?1個(gè)這樣的細胞分裂x次后,得到的細胞的個(gè)數y與x之間的關(guān)系是什么?

  分裂次數與細胞個(gè)數

  1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x

  歸納:y=2x

  問(wèn)題2:某種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過(guò)1年剩留的這種物質(zhì)是原來(lái)的84%,那么經(jīng)過(guò)x年后剩留量y與x的關(guān)系是什么?

  經(jīng)過(guò)1年,剩留量y=1×84%=;經(jīng)過(guò)2年,剩留量y=×=?經(jīng)過(guò)x年,剩留量y=

  尋找異同:

  你能從以上的兩個(gè)例子中得到的關(guān)系式里找到什么異同點(diǎn)嗎?

  共同點(diǎn):變量x與y構成函數關(guān)系式,是指數的形式,自變量在指數位置,底數是常數;不同點(diǎn):底數的取值不同。

  那么,今天我們來(lái)學(xué)習新的一個(gè)基本函數:指數函數

  得到指數函數的定義:定義:形如y=ax(a>0且a≠1)的函數叫做指數函數。

  在以前我們學(xué)過(guò)的函數中,一次函數用形如y=kx+b(k≠0)的形式表示,反比例函數用形如y=k/x(k≠0)表示,二次函數y=ax2+bx+c(a≠0)表示。對于其一

  般形式上的系數都有相應的限制。問(wèn):為什么指數函數對底數有這樣的要求呢?若a=0,當x>0時(shí),恒等于0,沒(méi)有研究?jì)r(jià)值;當x≤0時(shí),無(wú)意義。

  若a

  若a=1,則=1,是一個(gè)常量,也沒(méi)有研究的必要。

  所以有規定且a>0且a≠1。

  由定義,我們可以對指數函數有一初步熟悉。

  進(jìn)一步理解函數的定義:

  指數函數的定義域:在我們學(xué)過(guò)的指數運算中,指數可以是有理數,當指數是無(wú)理數時(shí),也是一個(gè)確定的實(shí)數,對于無(wú)理數,學(xué)過(guò)的有理指數冪的性質(zhì)和運算法則都適用,所以指數函數的定義域為R。

  研究函數的途徑:由函數的圖像的性質(zhì),從形與數兩方面研究。

  學(xué)習函數的一個(gè)很重要的目標就是應用,那么首先要對函數作一研究,研究函數的圖像及性質(zhì),然后利用其圖像性質(zhì)去解決數學(xué)問(wèn)題和實(shí)際問(wèn)題。根據以往的經(jīng)驗,你會(huì )從那幾個(gè)角度考慮?(圖像的分布范圍,圖像的變化趨勢)圖像的分布情況與函數的定義域,值域有關(guān),函數的變化趨勢體現函數的單調性。引導學(xué)生從定義域,值域,單調性,奇偶性,與坐標軸的交點(diǎn)情況著(zhù)手開(kāi)始。

  首先我們做出指數函數的圖像,我們研究一般性的事物,常用的方法是:由特殊到一般。

  我們以具體函數入手,讓學(xué)生以小組形式取不同底數的指數函數畫(huà)它們的圖像,將學(xué)生畫(huà)的函數圖像展示,(畫(huà)函數的圖像的步驟是:列表,描點(diǎn),連線(xiàn)。)。最后,老師在黑板(電腦)上演示列表,描點(diǎn),連線(xiàn)的過(guò)程,并且,畫(huà)出取不同的值時(shí),函數的圖像。

  要求學(xué)生描述出指數函數圖像的特征,并試著(zhù)描述出性質(zhì)。

  數學(xué)發(fā)展的歷史表明,每一個(gè)重要的數學(xué)概念的形成和發(fā)展,其中都有豐富的經(jīng)歷,新課程較好的體現了這點(diǎn)。對新課程背景下的學(xué)生而言,數學(xué)的知識應該是一個(gè)數學(xué)化的過(guò)程,即通過(guò)對常識材料進(jìn)行細致的觀(guān)察、思考,借助于分析、比較、綜合、抽象、概括等思維活動(dòng),對常識材料進(jìn)行去粗取精、去偽存真的精加工。該案例正是從數學(xué)研究和數學(xué)實(shí)驗的過(guò)程中進(jìn)行設計。雖然學(xué)生的思維不一定真實(shí)的重演了人類(lèi)對數學(xué)知識探索的全過(guò)程,但確確實(shí)實(shí)通過(guò)實(shí)驗、觀(guān)察、比較、分析、歸納、抽象、概括等思維活動(dòng),在探索中將數學(xué)數學(xué)化,從而才使學(xué)生對數學(xué)學(xué)習產(chǎn)生了樂(lè )趣,對數學(xué)的研究方法有了一定的了解。

  雖然學(xué)生要學(xué)的數學(xué)是歷史上前人已建構好了的,但對他們而言,仍是全新的、未知的,需要用他們自己的學(xué)習活動(dòng)來(lái)再現類(lèi)似的過(guò)程。該案例正是從創(chuàng )設問(wèn)題情景作為教學(xué)設計的重要的內容之一。教師應該把教學(xué)設計成學(xué)生動(dòng)手操作、觀(guān)察猜想、揭示規律等一系列過(guò)程,側重于學(xué)生的探索、分析與思考,側重于過(guò)程的探究及在此過(guò)程中所形成的一般數學(xué)能力。

  教師的地位應由主導者轉變?yōu)橐龑д,使教學(xué)活動(dòng)真正成為學(xué)生的活動(dòng)。在教學(xué)過(guò)程中,把學(xué)習的主動(dòng)權交給學(xué)生,在時(shí)間和空間上保證學(xué)生在教師的指導下,學(xué)生能自己獨立自主的探究學(xué)習。使教學(xué)活動(dòng)始終處于學(xué)生的“最近發(fā)展區”,使每一個(gè)學(xué)生通過(guò)自己的努力,在自己原有的基礎上都有所獲,都有提高?傊,通過(guò)案例研究,不斷研究新教材、新理念,不斷調整教學(xué)策略?xún)?yōu)化課堂教學(xué),培養學(xué)生探究學(xué)習與創(chuàng )新學(xué)習能力將是我們在數學(xué)教學(xué)中要繼續探究的課題。

高中數學(xué)教學(xué)設計2

  教學(xué)目標

 。1)理解四種命題的概念;

 。2)理解四種命題之間的相互關(guān)系,能由原命題寫(xiě)出其他三種形式;

 。3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系;

 。4)初步掌握反證法的概念及反證法證題的基本步驟;

 。5)通過(guò)對四種命題之間關(guān)系的學(xué)習,培養學(xué)生邏輯推理能力;

 。6)通過(guò)對四種命題的存在性和相對性的認識,進(jìn)行辯證唯物主義觀(guān)點(diǎn)教育;

 。7)培養學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):四種命題之間的關(guān)系;難點(diǎn):反證法的運用.

  教學(xué)過(guò)程設計

  第一課時(shí):四種命題

  一、導入新課

  【練習】1.把下列命題改寫(xiě)成“若p則q”的形式:

 。╨)同位角相等,兩直線(xiàn)平行;

 。2)正方形的四條邊相等.

  2.什么叫互逆命題?上述命題的逆命題是什么?

  將命題寫(xiě)成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結論.

  如果第一個(gè)命題的條件是第二個(gè)命題的結論,且第一個(gè)命題的結論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題.

  上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線(xiàn)平行,則同位角相等”.

  值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題.

  3.原命題真,逆命題一定真嗎?

  “同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學(xué)生活動(dòng):

  口答:(l)若同位角相等,則兩直線(xiàn)平行;(2)若一個(gè)四邊形是正方形,則它的四條邊相等.

  設計意圖:

  通過(guò)復習舊知識,打下學(xué)習否命題、逆否命題的基礎.

  二、新課

  【設問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構成它的逆命題外,是否還可以構成其它形式的命題?

  【講述】可以將原命題的條件和結論分別否定,構成“同位角不相等,則兩直線(xiàn)不平行”,這個(gè)命題叫原命題的否命題.

  【提問(wèn)】你能由原命題“正方形的四條邊相等”構成它的否命題嗎?

  學(xué)生活動(dòng):

  口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等.

  教師活動(dòng):

  【講述】一個(gè)命題的條件和結論分別是另一個(gè)命題的條件的否定和結論的否定,這樣的兩個(gè)命題叫做互否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題.

  若用p和q分別表示原命題的條件和結論,用┐p和┐q分別表示p和q的否定.

  【板書(shū)】原命題:若p則q;

  否命題:若┐p則q┐.

  【提問(wèn)】原命題真,否命題一定真嗎?舉例說(shuō)明?

  學(xué)生活動(dòng):

  講論后回答:

  原命題“同位角相等,兩直線(xiàn)平行”真,它的否命題“同位角不相等,兩直線(xiàn)不平行”不真.

  原命題“正方形的四條邊相等”真,它的`否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真.

  由此可以得原命題真,它的否命題不一定真.

  設計意圖:

  通過(guò)設問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構成否命題及判斷它們的真假,調動(dòng)學(xué)生學(xué)習的積極性.

  教師活動(dòng):

  【提問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構成它的逆命題和否命題外,還可以不可以構成別的命題?

  學(xué)生活動(dòng):

  討論后回答

  【總結】可以將這個(gè)命題的條件和結論互換后再分別將新的條件和結論分別否定構成命題“兩條直線(xiàn)不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題.

  教師活動(dòng):

  【提問(wèn)】原命題“正方形的四條邊相等”的逆否命題是什么?

  學(xué)生活動(dòng):

  口答:若一個(gè)四邊形的四條邊不相等,則不是正方形.

  教師活動(dòng):

  【講述】一個(gè)命題的條件和結論分別是另一個(gè)命題的結論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題.把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題.

  原命題是“若 p則 q ”,則逆否命題為“若┐q 則┐p .

  【提問(wèn)】“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學(xué)生活動(dòng):

  討論后回答

  這兩個(gè)逆否命題都真.

  原命題真,逆否命題也真.

  教師活動(dòng):

  【提問(wèn)】原命題的真假與其他三種命題的真

  假有什么關(guān)系?舉例加以說(shuō)明?

  【總結】1.原命題為真,它的逆命題不一定為真.

  2.原命題為真,它的否命題不一定為真.

  3.原命題為真,它的逆否命題一定為真.

  設計意圖:

  通過(guò)設問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構成逆否命題及判斷它們的真假,調動(dòng)學(xué)生學(xué)的積極性.

  教師活動(dòng):

  三、課堂練習

  1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫(xiě)在方框內?

  學(xué)生活動(dòng):筆答

  教師活動(dòng):

  2.根據上圖所給出的箭頭,寫(xiě)出箭頭兩頭命題之間的關(guān)系?舉例加以說(shuō)明?

  學(xué)生活動(dòng):討論后回答

  設計意圖:

  通過(guò)學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系.

  教師活動(dòng):

高中數學(xué)教學(xué)設計3

  一、學(xué)習目標與任務(wù)

  1、學(xué)習目標描述

  知識目標

  (A)理解和掌握圓錐曲線(xiàn)的第一定義和第二定義,并能應用第一定義和第二定義來(lái)解題。

  (B)了解圓錐曲線(xiàn)與現實(shí)生活中的聯(lián)系,并能初步利用圓錐曲線(xiàn)的知識進(jìn)行知識延伸和知識創(chuàng )新。

  能力目標

  (A)通過(guò)學(xué)生的操作和協(xié)作探討,培養學(xué)生的實(shí)踐能力和分析問(wèn)題、解決問(wèn)題的能力。

  (B)通過(guò)知識的再現培養學(xué)生的創(chuàng )新能力和創(chuàng )新意識。

  (C)專(zhuān)題網(wǎng)站中提供各層次的例題和習題,解決各層次學(xué)生的學(xué)習過(guò)程中的各種的需要,從而培養學(xué)生應用知識的能力。

  德育目標

  讓學(xué)生體會(huì )知識產(chǎn)生的全過(guò)程,培養學(xué)生運動(dòng)變化的辯證唯物主義思想。

  2、學(xué)習內容與學(xué)習任務(wù)說(shuō)明

  本節課的內容是圓錐曲線(xiàn)的第一定義和圓錐曲線(xiàn)的統一定義,以及利用圓錐曲線(xiàn)的定義來(lái)解決軌跡問(wèn)題和最值問(wèn)題。

  學(xué)習重點(diǎn):圓錐曲線(xiàn)的第一定義和統一定義。

  學(xué)習難點(diǎn):圓錐曲線(xiàn)第一定義和統一定義的應用。

  明確本課的重點(diǎn)和難點(diǎn),以學(xué)習任務(wù)驅動(dòng)為方式,以圓錐曲線(xiàn)定義和定義應用為中心,主動(dòng)操作實(shí)驗、大膽分析問(wèn)題和解決問(wèn)題。

  抓住本節課的重點(diǎn)和難點(diǎn),采取的基于學(xué)科專(zhuān)題網(wǎng)站下的三者結合的教學(xué)模式,突出重點(diǎn)、突破難點(diǎn)。

  充分利用《圓錐曲線(xiàn)》專(zhuān)題網(wǎng)站內的內容,在著(zhù)重學(xué)習內容的基礎上,內延外拓,培養學(xué)生的創(chuàng )新精神和克服困難的信心。

  二、學(xué)習者特征分析

 。ㄕf(shuō)明學(xué)生的學(xué)習特點(diǎn)、學(xué)習習慣、學(xué)習交往特點(diǎn)等)

  l本課的學(xué)習對象為高二下學(xué)期學(xué)生,他們經(jīng)過(guò)近兩年的高中學(xué)習,已經(jīng)有一定的學(xué)習基礎和分析問(wèn)題、解決問(wèn)題的能力,基本的計算機操作較為熟練。

  高二年下學(xué)期學(xué)生由于高考的壓力,他們保持著(zhù)傳統教學(xué)的學(xué)習習慣,在

  l課堂上的主體作用的體現不是太充分,但是如果他們還是樂(lè )于嘗試、勇于探索的。

  高二年的學(xué)生在學(xué)習交往上“個(gè)別化學(xué)習”和“協(xié)作討論學(xué)習”并存,也就是說(shuō)學(xué)生是具有一定的群體性小組交流能力與協(xié)同討論學(xué)習能力的,還是能完成上課時(shí)教師布置的協(xié)作學(xué)習任務(wù)的。

  三、學(xué)習環(huán)境選擇與學(xué)習資源設計

  1.學(xué)習環(huán)境選擇(打√)

 。1)Web教室(√)(2)局域網(wǎng)(3)城域網(wǎng)(4)校園網(wǎng)(√)(5)Internet(√)

 。6)其它

  2、學(xué)習資源類(lèi)型(打√)

 。1)課件(網(wǎng)絡(luò )課件)(√)(2)工具(3)專(zhuān)題學(xué)習網(wǎng)站(√)(4)多媒體資源庫

 。5)案例庫(6)題庫(7)網(wǎng)絡(luò )課程(8)其它

  3、學(xué)習資源內容簡(jiǎn)要說(shuō)明

 。ㄕf(shuō)明名稱(chēng)、網(wǎng)址、主要內容等)

  《圓錐曲線(xiàn)專(zhuān)題網(wǎng)站》:從自然與科技、定義與應用、性質(zhì)與實(shí)踐和創(chuàng )新與未來(lái)四個(gè)方面圍繞圓錐曲線(xiàn)進(jìn)行探討與研究。(IP:192.168.3.134)

  用Flash5、幾何畫(huà)板和Authorware6制作可操作且具有交互性的.網(wǎng)絡(luò )課件放在專(zhuān)題網(wǎng)站里。

  四、學(xué)習情境創(chuàng )設

  1、學(xué)習情境類(lèi)型(打√)

 。1)真實(shí)性情境(√)(2)問(wèn)題性情境(√)

 。3)虛擬性情境(√)(4)其它

  2、學(xué)習情境設計

  真實(shí)性情境:用Flash5制作的一系列教學(xué)軟件。用幾何畫(huà)板制作的《圓錐曲線(xiàn)的統一定義》的教學(xué)軟件。

  問(wèn)題性情境:圓錐曲線(xiàn)的截取方法、圓錐曲線(xiàn)的各種定義、典型例題。

  虛擬性情境:Authorware6制作的《圓錐曲線(xiàn)的截取》,模擬曲線(xiàn)截取。

  五、學(xué)習活動(dòng)的組織

  1、自主學(xué)習設計(打√并填寫(xiě)相關(guān)內容)

  (1)拋錨式

  (2)支架式(√)相應內容:圓錐曲線(xiàn)的第一定義和統一定義。

  使用資源:數學(xué)教材、專(zhuān)題網(wǎng)站及專(zhuān)題網(wǎng)站下的多媒體教學(xué)軟件。

  學(xué)生活動(dòng):分析、操作、協(xié)作討論、總結、提交結論。

  教師活動(dòng):?jiǎn)?wèn)題的提出。學(xué)習資源獲取路徑的指導。問(wèn)題解答和咨詢(xún)。

  (3)隨機進(jìn)入式(√)相應內容:圓錐曲線(xiàn)定義的典型應用。

  使用資源:軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型例題以及各個(gè)題目的動(dòng)畫(huà)演示和答案。

  學(xué)生活動(dòng):根據自身情況選題、分析題目、協(xié)作討論、解答題目。

  教師活動(dòng):講解例題,總結點(diǎn)評學(xué)生做題過(guò)程中的問(wèn)題。

  (4)其它

  2、協(xié)作學(xué)習設計(打√并填寫(xiě)相關(guān)內容)

 。1)競爭

 。2)伙伴(√)

  相應內容:圓錐曲線(xiàn)的第一定義和統一定義

  使用資源:數學(xué)教材、專(zhuān)題網(wǎng)站及專(zhuān)題網(wǎng)站下的多媒體教學(xué)軟件。

  分組情況:每組三人

  學(xué)生活動(dòng):學(xué)生之間對圓錐曲線(xiàn)的定義展開(kāi)討論,從而達到對定義的理解和掌握。

  教師活動(dòng):?jiǎn)?wèn)題的提出。學(xué)習資源獲取路徑的指導。問(wèn)題解答和咨詢(xún)。

 。3)協(xié)同(√)

  相應內容:圓錐曲線(xiàn)定義的典型應用。

  使用資源:軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型例題以及各個(gè)題目的動(dòng)畫(huà)演示和答案。

  分組情況:每組三人。

  學(xué)生活動(dòng):通過(guò)協(xié)作討論區,同學(xué)之間互相配合、互相幫助、各種觀(guān)點(diǎn)互相補充。

  教師活動(dòng):總結點(diǎn)評學(xué)生做題過(guò)程中的問(wèn)題。

 。4)辯論

 。5)角色扮演

 。6)其它

  4、教學(xué)結構流程的設計

  六、學(xué)習評價(jià)設計

  1、測試形式與工具(打√)

 。1)堂上提問(wèn)(√)(2)書(shū)面練習(3)達標測試(4)學(xué)生自主網(wǎng)上測試(√)(5)合作完成作品(6)其它

  2、測試內容

  教師堂上提問(wèn):圓錐曲線(xiàn)的定義、學(xué)生提交的結論的完整性、學(xué)生協(xié)作討論時(shí)的疑問(wèn)、例題講解過(guò)程中問(wèn)題,課堂總結。

  學(xué)生自主網(wǎng)上測試:解決軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型題目。

  (附)圓錐曲線(xiàn)專(zhuān)題網(wǎng)站設計分析

  (1)設計思路

  (A)給學(xué)生操作與實(shí)踐的機會(huì ):在每一環(huán)節中建設一個(gè)可供學(xué)生操作的實(shí)驗平臺。

  (B)突出教學(xué)中“主導和主體”的作用:在每一環(huán)節中建設一個(gè)可供師生交流的平臺。

  (C)突出知識的再創(chuàng )新過(guò)程和知識的延伸:如圓錐曲線(xiàn)的作法和知識的創(chuàng )新與應用。

  (D)強調教學(xué)軟件的交互性:如在題目中給出提示的動(dòng)畫(huà)過(guò)程和解答過(guò)程。

  (E)突出和各學(xué)科的聯(lián)系:如斜拋運動(dòng)和行星運動(dòng)等等。

  (F)強調分層次的教學(xué):

  如在知識應用中的配置不同層次的例題和練習:

  (2)網(wǎng)站導航圖

高中數學(xué)教學(xué)設計4

  一、指導思想與理論依據

  數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過(guò)程。因此本節課我以建構主義的“創(chuàng )設問(wèn)題情境——提出數學(xué)問(wèn)題——嘗試解決問(wèn)題——驗證解決方法”為主,主要采用觀(guān)察、啟發(fā)、類(lèi)比、引導、探索相結合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標體現的更加完美。

  二、教材分析

  三角函數的誘導公式是普通高中課程標準實(shí)驗教科書(shū)(人教A版)數學(xué)必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六)、本節是第一課時(shí),教學(xué)內容為公式(二)、(三)、(四)、教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱(chēng)思想發(fā)現任意角與、 、終邊的對稱(chēng)關(guān)系,發(fā)現他們與單位圓的交點(diǎn)坐標之間關(guān)系,進(jìn)而發(fā)現他們的三角函數值的關(guān)系,即發(fā)現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四)、同時(shí)教材滲透了轉化與化歸等數學(xué)思想方法,為培養學(xué)生養成良好的學(xué)習習慣提出了要求、為此本節內容在三角函數中占有非常重要的地位、

  三、學(xué)情分析

  本節課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習習慣,所以采用發(fā)現的教學(xué)方法應該能輕松的完成本節課的教學(xué)內容、

  四、教學(xué)目標

 。1)、基礎知識目標:理解誘導公式的發(fā)現過(guò)程,掌握正弦、余弦、正切的誘導公式;

 。2)、能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡(jiǎn)單的三角函數求值與化簡(jiǎn);

 。3)、創(chuàng )新素質(zhì)目標:通過(guò)對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學(xué)思想,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力;

 。4)、個(gè)性品質(zhì)目標:通過(guò)誘導公式的學(xué)習和應用,感受事物之間的普通聯(lián)系規律,運用化歸等數學(xué)思想方法,揭示事物的本質(zhì)屬性,培養學(xué)生的唯物史觀(guān)、

  五、教學(xué)重點(diǎn)和難點(diǎn)

  1、教學(xué)重點(diǎn)

  理解并掌握誘導公式、

  2、教學(xué)難點(diǎn)

  正確運用誘導公式,求三角函數值,化簡(jiǎn)三角函數式、

  六、教法學(xué)法以及預期效果分析

  “授人以魚(yú)不如授之以魚(yú)”,作為一名老師,我們不僅要傳授給學(xué)生數學(xué)知識,更重要的是傳授給學(xué)生數學(xué)思想方法,如何實(shí)現這一目的,要求我們每一位教者苦心鉆研、認真探究、下面我從教法、學(xué)法、預期效果等三個(gè)方面做如下分析、

  1、教法

  數學(xué)教學(xué)是數學(xué)思維活動(dòng)的教學(xué),而不僅僅是數學(xué)活動(dòng)的結果,數學(xué)學(xué)習的目的不僅僅是為了獲得數學(xué)知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì)、

  在本節課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現為主線(xiàn),盡力滲透類(lèi)比、化歸、數形結合等數學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導、共同探究、綜合應用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習環(huán)境,讓學(xué)生體味學(xué)習的`快樂(lè )和成功的喜悅、

  2、學(xué)法

  “現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點(diǎn),卻忽略了學(xué)生接受知識需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習的興趣與熱情、如何能讓學(xué)生最大程度的消化知識,提高學(xué)習熱情是教者必須思考的問(wèn)題、

  在本節課的教學(xué)過(guò)程中,本人引導學(xué)生的學(xué)法為思考問(wèn)題、共同探討、解決問(wèn)題簡(jiǎn)單應用、重現探索過(guò)程、練習鞏固。讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習轉化為主動(dòng)的自主學(xué)習、

  3、預期效果

  本節課預期讓學(xué)生能正確理解誘導公式的發(fā)現、證明過(guò)程,掌握誘導公式,并能熟練應用誘導公式了解一些簡(jiǎn)單的化簡(jiǎn)問(wèn)題、

  七、教學(xué)流程設計

 。ㄒ唬﹦(chuàng )設情景

  1、復習銳角300,450,600的三角函數值;

  2、復習任意角的三角函數定義;

  3、問(wèn)題:由,你能否知道sin2100的值嗎?引如新課、

  設計意圖

  自信的鼓勵是增強學(xué)生學(xué)習數學(xué)的自信,簡(jiǎn)單易做的題加強了每個(gè)學(xué)生學(xué)習的熱情,具體數據問(wèn)題的出現,讓學(xué)生既有好像會(huì )做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會(huì )證明我能行,從而思考解決的辦法、

 。ǘ┬轮骄

  1、讓學(xué)生發(fā)現300角的終邊與2100角的終邊之間有什么關(guān)系;

  2、讓學(xué)生發(fā)現300角的終邊和2100角的終邊與單位圓的交點(diǎn)的坐標有什么關(guān)系;

  2100與sin300之間有什么關(guān)系、

  設計意圖

  由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現任意角與的三角函數值的關(guān)系做好鋪墊、

 。ㄈ﹩(wèn)題一般化

高中數學(xué)教學(xué)設計5

  一、課題:

  人教版全日制普通高級中學(xué)教科書(shū)數學(xué)第一冊(上)《2.7對數》

  二、指導思想與理論依據:

  《數學(xué)課程標準》指出:高中數學(xué)課程應講清一些基本內容的實(shí)際背景和應用價(jià)值,開(kāi)展“數學(xué)建!钡膶W(xué)習活動(dòng),把數學(xué)的應用自然地融合在平常的教學(xué)中。任何一個(gè)數學(xué)概念的引入,總有它的現實(shí)或數學(xué)理論發(fā)展的需要。都應強調它的現實(shí)背景、數學(xué)理論發(fā)展背景或數學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內容顯得自然和親切,讓學(xué)生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學(xué)生認識數學(xué)內容的實(shí)際背景和應用的'價(jià)值。在教學(xué)設計時(shí),既要關(guān)注學(xué)生在數學(xué)情感態(tài)度和科學(xué)價(jià)值觀(guān)方面的發(fā)展,也要幫助學(xué)生理解和掌握數學(xué)基礎知識和基本技能,發(fā)展能力。在課程實(shí)施中,應結合教學(xué)內容介紹一些對數學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數學(xué)在人類(lèi)社會(huì )進(jìn)步、人類(lèi)文化建設中的作用,同時(shí)反映社會(huì )發(fā)展對數學(xué)發(fā)展的促進(jìn)作用。

  三、教材分析:

  本節內容主要學(xué)習對數的概念及其對數式與指數式的互化。它屬于函數領(lǐng)域的知識。而對數的概念是對數函數部分教學(xué)中的核心概念之一,而函數的思想方法貫穿在高中數學(xué)教學(xué)的始終。通過(guò)對數的學(xué)習,可以解決數學(xué)中知道底數和冪值求指數的問(wèn)題,以及對數函數的相關(guān)問(wèn)題。

  四、學(xué)情分析:

  在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學(xué)生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習指數的基礎上學(xué)習對數的概念是水到渠成的事。

  五、教學(xué)目標:

  (一)教學(xué)知識點(diǎn):

  1.對數的概念。

  2.對數式與指數式的互化。

  (二)能力目標:

  1.理解對數的概念。

  2.能夠進(jìn)行對數式與指數式的互化。

  (三)德育滲透目標:

  1.認識事物之間的相互聯(lián)系與相互轉化,

  2.用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題。

  六、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn)是對數定義,難點(diǎn)是對數概念的理解。

  七、教學(xué)方法:

  講練結合法八、教學(xué)流程:

  問(wèn)題情景(復習引入)——實(shí)例分析、形成概念(導入新課)——深刻認識概念(對數式與指數式的互化)——變式分析、深化認識(對數的性質(zhì)、對數恒等式,介紹自然對數及常用對數)——練習小結、形成反思(例題,小結)

  八、教學(xué)反思:

  對本節內容在進(jìn)行教學(xué)設計之前,本人反復閱讀了課程標準和教材,教材內容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節內容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學(xué)中,對于一些較簡(jiǎn)單的內容,應放手讓學(xué)生多一些探究與合作。隨著(zhù)教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內容等教學(xué)因素,都在不斷更新,作為數學(xué)教師要更新教學(xué)觀(guān)念,從學(xué)生的全面發(fā)展來(lái)設計課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標準》的要求。

  對于本教學(xué)設計,時(shí)間倉促,不足之處在所難免,期待與各位同仁交流。

高中數學(xué)教學(xué)設計6

  教學(xué)準備

  教學(xué)目標

  解三角形及應用舉例

  教學(xué)重難點(diǎn)

  解三角形及應用舉例

  教學(xué)過(guò)程

  一.基礎知識精講

  掌握三角形有關(guān)的定理

  利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

  (1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數問(wèn)題.

  二.問(wèn)題討論

  思維點(diǎn)撥:已知兩邊和其中一邊的對角解三角形問(wèn)題,用正弦定理解,但需注意解的情況的討論.

  思維點(diǎn)撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時(shí),要利用三角函數的'有關(guān)性質(zhì).

  例6:在某海濱城市附近海面有一臺風(fēng),據檢測,當前臺風(fēng)中心位于城市O(如圖)的東偏南方向300 km的海面P處,并以20 km / h的速度向西偏北的方向移動(dòng),臺風(fēng)侵襲的范圍為圓形區域,當前半徑為60 km,并以10 km / h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到臺風(fēng)的侵襲。

  一. 小結:

  1.利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);

  2.利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

  (1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  3.邊角互化是解三角形問(wèn)題常用的手段.

  三.作業(yè):P80闖關(guān)訓練

高中數學(xué)教學(xué)設計7

  1、探究發(fā)現任意角的終邊與的終邊關(guān)于原點(diǎn)對稱(chēng);

  2、探究發(fā)現任意角的終邊和角的.終邊與單位圓的交點(diǎn)坐標關(guān)于原點(diǎn)對稱(chēng);

  3、探究發(fā)現任意角與的三角函數值的關(guān)系、

  設計意圖

  首先應用單位圓,并以對稱(chēng)為載體,用聯(lián)系的觀(guān)點(diǎn),把單位圓的性質(zhì)與三角函數聯(lián)系起來(lái),數形結合,問(wèn)題的設計提問(wèn)從特殊到一般,從線(xiàn)對稱(chēng)到點(diǎn)對稱(chēng)到三角函數值之間的關(guān)系,逐步上升,一氣呵成誘導公式二、同時(shí)也為學(xué)生將要自主發(fā)現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰,敢于前進(jìn)

 。ㄋ模┚毩

  利用誘導公式(二),口答三角函數值。

  喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問(wèn)題、

 。ㄎ澹﹩(wèn)題變形

  由sin3000= —sin600出發(fā),用三角的定義引導學(xué)生求出sin(—3000),Sin150 0值,讓學(xué)生聯(lián)想若已知sin3000= —sin600,能否求出sin(—3000),Sin150 0)的值、學(xué)生自主探究。

高中數學(xué)教學(xué)設計8

  一、探究式教學(xué)模式概述

  1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導下,像科學(xué)家發(fā)現真理那樣以類(lèi)似科學(xué)探究的方式來(lái)展開(kāi)學(xué)習活動(dòng),通過(guò)自己大腦的獨立思考和探究,去弄清事物發(fā)展變化的起因和內在聯(lián)系,從中探索出知識規律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內容有關(guān)的內容和認知策略直接告訴學(xué)生,而是創(chuàng )造一種適宜的認知和合作環(huán)境,讓學(xué)生通過(guò)探究形成認知策略,從而對教學(xué)目標進(jìn)行一種全方位的學(xué)習,實(shí)現學(xué)生從被動(dòng)學(xué)習到主動(dòng)學(xué)習,培養學(xué)生的科學(xué)探究能力、創(chuàng )新意識和科學(xué)精神?梢(jiàn),探究式教學(xué)主張把學(xué)習知識的過(guò)程和探究知識的過(guò)程統一起來(lái),充分發(fā)揮學(xué)生學(xué)習的自主性和參與性。

  2、堂探究式教學(xué)的實(shí)質(zhì)。課堂探究式教學(xué)的實(shí)質(zhì)是使學(xué)生通過(guò)類(lèi)似科學(xué)家科學(xué)探究的過(guò)程來(lái)理解科學(xué)探究概念和科學(xué)規律的本質(zhì),并培養學(xué)生的科學(xué)探究能力。具體地說(shuō),它包括兩個(gè)相互聯(lián)系的方面:一是有一個(gè)以“學(xué)”為中心的探究性學(xué)習環(huán)境。在這個(gè)環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個(gè)知識主題來(lái)展開(kāi)的。這個(gè)學(xué)習環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設想,并以自己的方式檢驗其設想。二是教師可以給學(xué)生提供必要的幫助和指導,使學(xué)生在研究中能明確方向。這說(shuō)明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標有關(guān)的概念和認知策略告訴學(xué)生,取而代之的是教師創(chuàng )造出一種智力交流和社會(huì )交往的環(huán)境,讓學(xué)生通過(guò)探究自己發(fā)現規律。

  3、探究式教學(xué)模式的特征。

 。1)問(wèn)題性。問(wèn)題性是探究式教學(xué)模式的關(guān)鍵。能否提出對學(xué)生具有挑戰性和吸引力的問(wèn)題,使學(xué)生產(chǎn)生問(wèn)題意識,是探究教學(xué)成功與否的關(guān)鍵所在。恰當的問(wèn)題會(huì )激起學(xué)生強烈的學(xué)習愿望,并引發(fā)學(xué)生的求異思維和創(chuàng )造思維,F代教育心理學(xué)研究提出:“學(xué)生的學(xué)習過(guò)程和科學(xué)家的探索過(guò)程在本質(zhì)上是一樣的,都是一個(gè)發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的過(guò)程!彼耘囵B學(xué)生的問(wèn)題意識是探究式教學(xué)的重要使命。

 。2)過(guò)程性。過(guò)程性是探究式教學(xué)模式的重點(diǎn)。愛(ài)因斯坦說(shuō):“結論總以完成的形式出現,讀者體會(huì )不到探索和發(fā)現的喜悅,感覺(jué)不到思想形成的生動(dòng)過(guò)程,也就很難達到清楚、全面理解的境界!碧骄渴浇虒W(xué)模式正是考慮到這些人的認知特點(diǎn)來(lái)組織教學(xué)的,它強調學(xué)生探索知識的經(jīng)歷和獲得新知識的親身感悟。

 。3)開(kāi)放性。開(kāi)放性是探究式教學(xué)模式的難點(diǎn)。探究式教學(xué)模式總是綜合合作學(xué)習、發(fā)現學(xué)習、自主學(xué)習等學(xué)習方式的長(cháng)處,培養學(xué)生良好的學(xué)習態(tài)度和學(xué)習方法,提倡和發(fā)展多樣化的學(xué)習方式。探究式教學(xué)模式要面對大量開(kāi)放性的問(wèn)題,教學(xué)資源和探究的結論面對生活、生產(chǎn)和科研是開(kāi)放的,這一切都為教師的教與學(xué)生的學(xué)帶來(lái)了機遇與挑戰。

  二、教學(xué)設計案例

  1、教學(xué)內容:數字排列中3、9的探究式教學(xué)。

  2、教學(xué)目標。

 。1)知識與技能:掌握數字排列的知識,能靈活運用所學(xué)知識。

 。2)過(guò)程與方法:在探究過(guò)程中掌握分析問(wèn)題的方法和邏輯推理的'方法。

 。3)情感態(tài)度與價(jià)值觀(guān):培養學(xué)生觀(guān)察、分析、推理、歸納等綜合能力,讓學(xué)生體會(huì )到認識客觀(guān)規律的一般過(guò)程。

  3、教學(xué)方法:談話(huà)探究法,討論探究法。

  4、教學(xué)過(guò)程。

 。1)創(chuàng )設情境。教師:在高中數學(xué)第十章的教學(xué)中,有關(guān)數字排列的問(wèn)題占有重要位置。我們曾經(jīng)做過(guò)的有關(guān)數字排列的題目,如“由若干個(gè)數字排列成偶數”、“能被5整除的數”等問(wèn)題,只要使排列成的數的個(gè)位數字為偶數,則這個(gè)數就是偶數,當排列成的數的個(gè)位數字為0或5時(shí),則這個(gè)數就能被5整除。那么能被3整除的數,能被9整除的數有何特點(diǎn)?

 。2)提出問(wèn)題。

  問(wèn)題1:在用1、2、3、4、5、6六個(gè)數字組成沒(méi)有重復數字的四位數中,是9的倍數的共有()

  A、36個(gè)B、18個(gè)C、12個(gè)D、24個(gè)

  問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數字組成沒(méi)有重復數字的自然數中,有多少個(gè)能被6整除的五位數?

 。3)探究思考。點(diǎn)評:乍一看問(wèn)題1,對于由若干個(gè)數字排列成9的倍數的問(wèn)題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數的個(gè)位數字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數,不能只考慮個(gè)位數字了。于是,需另辟蹊徑,探究能被9整除的數的特點(diǎn),尋求解決問(wèn)題的途徑。

  教師:同學(xué)們觀(guān)察81、72、63、54、45、36、27、18、9這些數,甚至再寫(xiě)出幾個(gè)能被9整除的數,如981、1872等,看看它們有何特點(diǎn)?

  學(xué)生:它們都滿(mǎn)足“各位數字之和能被9整除”。

  教師:此結論的正確性如何?

  學(xué)生:老師,我們證明此結論的正確性,好嗎?

  教師:好。

  學(xué)生:證明:不妨以n是一個(gè)四位數為例證之。

  設n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)

  則n=1000a+100b+10c+d

  =(999a+a)+(99b+b)+(9c+c)+d

  =(999a+99b+9c)+(a+b+c+d)

  =9(111a+11b+c)+9m

  =9(111a+11b+c+m)

  ∵ a,b,c,m∈N

  ∴ 111a+11b+c+m∈N

  所以n能被9整除

  同理可證定理的后半部分。

  教師:看來(lái)上述結論正確。所以得到如下定理。

  定理:如果一個(gè)自然數n各個(gè)數位上的數字之和能被9整除,那么這個(gè)數n就能夠被9整除;如果一個(gè)自然數n各個(gè)數位上的數字之和能被3整除,那么這個(gè)數n就能夠被3整除。

  教師:利用該定理可解決“能被3、9整除”的數字排列問(wèn)題,請同學(xué)們先解答問(wèn)題1。

  學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

  教師:?jiǎn)l(fā)學(xué)生觀(guān)察這些數字有何特點(diǎn)?提問(wèn)學(xué)生。

  學(xué)生:可以看出只要從1、2、3、4、5、6這六個(gè)數中,選取的四個(gè)數字中含1(或2),或者同時(shí)含1、2,選取的四個(gè)數字之和都不是9的倍數。

  教師:請學(xué)生們繼續嘗試選取其他數字試一試。

  學(xué)生:3+4+5+6=18是9的倍數。

  教師:因此用1、2、3、4、5、6六個(gè)數字組成沒(méi)有重復數字的四位數中,是9的倍數的數,就是由3、4、5、6進(jìn)行全排列所得,共有=24(個(gè))。

  故應選D。

 。4)學(xué)以致用。

  問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數字組成沒(méi)有重復數字的自然數中,有多少個(gè)能被6整除的五位數?

  教師:從上面的定理知:如果一個(gè)自然數n各個(gè)數位上的數字之和能被3整除,那么這個(gè)數n就能夠被3整除。同學(xué)們對問(wèn)題2有何想法?

  學(xué)生討論:

  學(xué)生1:被6整除的五位數必須既能被2整除,又能被3整除,故能被6整除的五位數,即為各位數字之和能被3整除的五位偶數。

  學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個(gè)數字可分兩類(lèi):一類(lèi)是5個(gè)數字中無(wú)0,另一類(lèi)是5個(gè)數字中有0(但不含3)。

  學(xué)生3:第一類(lèi):5個(gè)數字中無(wú)0的五位偶數有。

  第二類(lèi):5個(gè)數字中含有0不含3的五位偶數有兩類(lèi),第一,0在個(gè)位有個(gè);第二,個(gè)位是2或4有,所以共有+ 。

  學(xué)生4:由分類(lèi)計數原理得:能被6整除的無(wú)重復數字的五位數共有+ + =108(個(gè))。

 。5)概括強化。

  重點(diǎn):了解數字排列問(wèn)題的特點(diǎn),理解掌握數字排列中3、9問(wèn)題的規律。

  難點(diǎn):數字排列知識的靈活應用。

  關(guān)鍵:證明的思路以及定理的得出。

  新學(xué)知識與已知知識之間的區別和聯(lián)系:已知知識“由若干個(gè)數字排列成偶數”、“能被5整除的數”等問(wèn)題,只要使排列成的數的個(gè)位數字為偶數,則這個(gè)數就是偶數,當排列成的數的個(gè)位數字為0或5時(shí),則這個(gè)數就能被5整除”。新學(xué)知識“如果一個(gè)自然數n各個(gè)數位上的數字之和能被9整除,那么這個(gè)數n就能夠被9整除;如果一個(gè)自然數n各個(gè)數位上的數字之和能被3整除,那么這個(gè)數n就能夠被3整除。都是數字排列知識,要學(xué)會(huì )靈活應用。

 。6)作業(yè)。請同學(xué)們自擬練習題,以求達到熟練解決此類(lèi)問(wèn)題的目的。

  總之,探究式教學(xué)模式是針對傳統教學(xué)的種種弊端提出來(lái)的,新課程改革強調改變課程過(guò)于注重知識的傳授和過(guò)于強調接受式學(xué)習的狀況,倡導學(xué)生主動(dòng)參與樂(lè )于探究、勤于動(dòng)手,讓學(xué)生經(jīng)歷科學(xué)探究過(guò)程,學(xué)習科學(xué)研究方法,并強調獲得知識、技能的過(guò)程成為學(xué)會(huì )學(xué)習和形成價(jià)值觀(guān)的過(guò)程,以培養學(xué)生的探究精神、創(chuàng )新意識和實(shí)踐能力。

高中數學(xué)教學(xué)設計9

  教學(xué)準備

  教學(xué)目標

  1、掌握平面向量的數量積及其幾何意義;

  2、掌握平面向量數量積的重要性質(zhì)及運算律;

  3、了解用平面向量的數量積可以處理垂直的問(wèn)題;

  4、掌握向量垂直的條件。

  教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):平面向量的數量積定義

  教學(xué)難點(diǎn):平面向量數量積的定義及運算律的理解和平面向量數量積的應用

  教學(xué)過(guò)程

  1、平面向量數量積(內積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,

  則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

  并規定0向量與任何向量的數量積為0。

  ×探究:1、向量數量積是一個(gè)向量還是一個(gè)數量?它的符號什么時(shí)候為正?什么時(shí)候為負?

  2、兩個(gè)向量的數量積與實(shí)數乘向量的積有什么區別?

 。1)兩個(gè)向量的數量積是一個(gè)實(shí)數,不是向量,符號由cosq的.符號所決定。

 。2)兩個(gè)向量的數量積稱(chēng)為內積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數量的積,書(shū)寫(xiě)時(shí)要嚴格區分。符號“· ”在向量運算中不是乘號,既不能省略,也不能用“×”代替。

 。3)在實(shí)數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0。因為其中cosq有可能為0。

高中數學(xué)教學(xué)設計10

  一、教學(xué)內容分析:

  本節教材選自人教a版數學(xué)必修②第二章第一節課,本節內容在立幾學(xué)習中起著(zhù)承上啟下的作用,具有重要的意義與地位。本節課是在前面已學(xué)空間點(diǎn)、線(xiàn)、面位置關(guān)系的基礎作為學(xué)習的出發(fā)點(diǎn),結合有關(guān)的實(shí)物模型,通過(guò)直觀(guān)感知、操作確認(合情推理,不要求證明)歸納出直線(xiàn)與平面平行的判定定理。本節課的學(xué)習對培養學(xué)生空間感與邏輯推理能力起到重要作用,特別是對線(xiàn)線(xiàn)平行、面面平行的判定的學(xué)習作用重大。

  二、學(xué)生學(xué)習情況分析:

  任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習興趣較高,但學(xué)習立幾所具備的語(yǔ)言表達及空間感與空間想象能力相對不足,學(xué)習方面有一定困難。

  三、設計思想

  本節課的設計遵循從具體到抽象的原則,適當運用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過(guò)直觀(guān)感知,操作確認,合情推理,歸納出直線(xiàn)與平面平行的判定定理,將合情推理與演繹推理有機結合,讓學(xué)生在觀(guān)察分析、自主探索、合作交流的過(guò)程中,揭示直線(xiàn)與平面平行的判定、理解數學(xué)的概念,領(lǐng)會(huì )數學(xué)的思想方法,養成積極主動(dòng)、勇于探索、自主學(xué)習的學(xué)習方式,發(fā)展學(xué)生的空間觀(guān)念和空間想象力,提高學(xué)生的數學(xué)邏輯思維能力。

  四、教學(xué)目標

  通過(guò)直觀(guān)感知——觀(guān)察——操作確認的認識方法理解并掌握直線(xiàn)與平面平行的判定定理,掌握直線(xiàn)與平面平行的畫(huà)法并能準確使用數學(xué)符號語(yǔ)言、文字語(yǔ)言表述判定定理。培養學(xué)生觀(guān)察、探究、發(fā)現的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀(guān)察、探究、發(fā)現中學(xué)習,在自主合作、交流中學(xué)習,體驗學(xué)習的樂(lè )趣,增強自信心,樹(shù)立積極的學(xué)習態(tài)度,提高學(xué)習的自我效能感。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應用及立幾空間感、空間觀(guān)念的形成與邏輯思維能力的培養。

  六、教學(xué)過(guò)程設計

  (一)知識準備、新課引入

  提問(wèn)1:根據公共點(diǎn)的情況,空間中直線(xiàn)a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a??

  提問(wèn)2:根據直線(xiàn)與平面平行的定義(沒(méi)有公共點(diǎn))來(lái)判定直線(xiàn)與平面平行你認為方便嗎?談?wù)勀愕目捶,并指出是否有別的判定途徑。

  [設計意圖:通過(guò)提問(wèn),學(xué)生復習并歸納空間直線(xiàn)與平面位置關(guān)系引入本節課題,并為探尋直線(xiàn)與平面平行判定定理作好準備。]

  (二)判定定理的探求過(guò)程

  1、直觀(guān)感知

  提問(wèn):根據同學(xué)們日常生活的觀(guān)察,你們能感知到并舉出直線(xiàn)與平面平行的具體事例嗎?

  生1:例舉日光燈與天花板,樹(shù)立的電線(xiàn)桿與墻面。

  生2:門(mén)轉動(dòng)到離開(kāi)門(mén)框的任何位置時(shí),門(mén)的邊緣線(xiàn)始終與門(mén)框所在的平面平行(由學(xué)生到教室門(mén)前作演示),然后教師用多媒體動(dòng)畫(huà)演示。

  [學(xué)情預設:此處的預設與生成應當是很自然的,但老師要預見(jiàn)到可能出現的情況如電線(xiàn)桿與墻面可能共面的情形及門(mén)要離開(kāi)門(mén)框的位置等情形。]

  2、動(dòng)手實(shí)踐

  教師取出預先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉動(dòng),觀(guān)察另一邊與桌面的位置給人以平行的感覺(jué),而當把直角腰放在桌面上并轉動(dòng),觀(guān)察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會(huì )感覺(jué)到老師(視為線(xiàn))與四周墻面平行,如老師向前或后傾斜則感覺(jué)老師(視為線(xiàn))與左、右墻面平行,如老師向左、右傾斜,則感覺(jué)老師(視為線(xiàn))與前、后墻面平行(老師也可用事先準備的木條放在講臺桌上作上述情形的演示)。

  [設計意圖:設置這樣動(dòng)手實(shí)踐的情境,是為了讓學(xué)生更清楚地看到線(xiàn)面平行與否的關(guān)鍵因素是什么,使學(xué)生學(xué)在情境中,思在情理中,感悟在內心中,學(xué)自己身邊的數學(xué),領(lǐng)悟空間觀(guān)念與空間圖形性質(zhì)。]

  3、探究思考

  (1)上述演示的.直線(xiàn)與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過(guò)觀(guān)察感知發(fā)現直線(xiàn)與平面平行,關(guān)鍵是三個(gè)要素:①平面外一條線(xiàn)②我們把直線(xiàn)與平面相交或平行的位置關(guān)系統稱(chēng)為直線(xiàn)在平面外,用符號表示為平面內一條直線(xiàn)③這兩條直線(xiàn)平行

  (2)如果平面外的直線(xiàn)a與平面?內的一條直線(xiàn)b平行,那么直線(xiàn)a與平面?平行嗎?

  4、歸納確認:(多媒體幻燈片演示)

  直線(xiàn)和平面平行的判定定理:平面外的一條直線(xiàn)與平面內的一條直線(xiàn)平行,則該直線(xiàn)和這個(gè)平面平行。

  簡(jiǎn)單概括:(內外)線(xiàn)線(xiàn)平行?線(xiàn)面平行a符號表示:ba||? a||b??

  溫馨提示:

  作用:判定或證明線(xiàn)面平行。

  關(guān)鍵:在平面內找(或作)出一條直線(xiàn)與面外的直線(xiàn)平行。

  思想:空間問(wèn)題轉化為平面問(wèn)題

  (三)定理運用,問(wèn)題探究(多媒體幻燈片演示)

  1、想一想:

  (1)判斷下列命題的真假?說(shuō)明理由:

 、偃绻粭l直線(xiàn)不在平面內,則這條直線(xiàn)就與平面平行()

 、谶^(guò)直線(xiàn)外一點(diǎn)可以作無(wú)數個(gè)平面與這條直線(xiàn)平行( )

 、垡恢本(xiàn)上有二個(gè)點(diǎn)到平面的距離相等,則這條直線(xiàn)與平面平行( )

  (2)若直線(xiàn)a與平面?內無(wú)數條直線(xiàn)平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學(xué)情預設:設計這組問(wèn)題目的是強調定理中三個(gè)條件的重要性,同時(shí)預設(1)中的③學(xué)生可能認為正確的,這樣就無(wú)法達到老師的預設與生成的目的,這時(shí)教師要引導學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預先準備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過(guò)泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強,能按老師的要求生成正確的結果則就由個(gè)別學(xué)生進(jìn)行演示。]

  2、作一作:

  設a、b是二異面直線(xiàn),則過(guò)a、b外一點(diǎn)p且與a、b都平行的平面存在嗎?若存在請畫(huà)出平面,不存在說(shuō)明理由?

  先由學(xué)生討論交流,教師提問(wèn),然后教師總結,并用準備好的羊毛針、鐵線(xiàn)、泡沫板等演示平面的形成過(guò)程,最后借多媒體展示作圖的動(dòng)畫(huà)過(guò)程。

  [設計意圖:這是一道動(dòng)手操作的問(wèn)題,不僅是為了拓展加深對定理的認識,更重要的是培養學(xué)生空間感與思維的嚴謹性。]

  3、證一證:

  例1(見(jiàn)課本60頁(yè)例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點(diǎn),求證:ef ||平面bcd。

  變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結ef、fg、gh、he、ac、bd請分別找出圖中滿(mǎn)足線(xiàn)面平行位置關(guān)系的所有情況。(共6組線(xiàn)面平行)變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線(xiàn)段ae上、q點(diǎn)在線(xiàn)段fc上,連結ph、qg,并繼續探究圖中所具有的線(xiàn)面平行位置關(guān)系?(在變式一的基礎上增加了4組線(xiàn)面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說(shuō)明理由。

  [設計意圖:設計二個(gè)變式訓練,目的是通過(guò)問(wèn)題探究、討論,思辨,及時(shí)鞏固定理,運用定理,培養學(xué)生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef ||平面bdd1b1分析:根據判定定理必須在平

  面bdd1b1內找(作)一條線(xiàn)與ef平行,聯(lián)想到中點(diǎn)問(wèn)題找中點(diǎn)解決的方法,可以取bd或b1d1中點(diǎn)而證之。

  思路一:取bd中點(diǎn)g連d1g、eg,可證d1gef為平行四邊形。

  思路二:取d1b1中點(diǎn)h連hb、hf,可證hfeb為平行四邊形。

  [知識鏈接:根據空間問(wèn)題平面化的思想,因此把找空間平行直線(xiàn)問(wèn)題轉化為找平行四邊形或三角形中位線(xiàn)問(wèn)題,這樣就自然想到了找中點(diǎn)。平行問(wèn)題找中點(diǎn)解決是個(gè)好途徑好方法。這種思想方法是解決立幾論證平行問(wèn)題,培養邏輯思維能力的重要思想方法]

  4、練一練:

  練習1:見(jiàn)課本6頁(yè)練習1、2

  練習2:將兩個(gè)全等的正方形abcd和abef拼在一起,設m、n分別為ac、bf中點(diǎn),求證:mn ||平面bce。

  變式:若將練習2中m、n改為ac、bf分點(diǎn)且am = fn,試問(wèn)結論仍成立嗎?試證之。

  [設計意圖:設計這組練習,目的是為了鞏固與深化定理的運用,特別是通過(guò)練習2及其變式的訓練,讓學(xué)生能在復雜的圖形中去識圖,去尋找分析問(wèn)題、解決問(wèn)題的途徑與方法,以達到逐步培養空間感與邏輯思維能力。]

  (四)總結

  先由學(xué)生口頭總結,然后教師歸納總結(由多媒體幻燈片展示):

  1、線(xiàn)面平行的判定定理:平面外的一條直線(xiàn)與平面內的一條直線(xiàn)平行,則該直線(xiàn)與這個(gè)平面平行。

  2、定理的符號表示:ba||? a||b??簡(jiǎn)述:(內外)線(xiàn)線(xiàn)平行則線(xiàn)面平行

  3、定理運用的關(guān)鍵是找(作)面內的線(xiàn)與面外的線(xiàn)平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線(xiàn)性質(zhì)等。

  七、教學(xué)反思

  本節“直線(xiàn)與平面平行的判定”是學(xué)生學(xué)習空間位置關(guān)系的判定與性質(zhì)的第一節課,也是學(xué)生開(kāi)始學(xué)習立幾演澤推理論述的思維方式方法,因此本節課學(xué)習對發(fā)展學(xué)生的空間觀(guān)念和邏輯思維能力是非常重要的。

  本節課的設計遵循“直觀(guān)感知——操作確認——思辯論證”的認識過(guò)程,注重引導學(xué)生通過(guò)觀(guān)察、操作交流、討論、有條理的思考和推理等活動(dòng),從多角度認識直線(xiàn)和平面平行的判定方法,讓學(xué)生通過(guò)自主探索、合作交流,進(jìn)一步認識和掌握空間圖形的性質(zhì),積累數學(xué)活動(dòng)的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀(guān)念與推理能力。

  本節課的設計注重訓練學(xué)生準確表達數學(xué)符號語(yǔ)言、文字語(yǔ)言及圖形語(yǔ)言,加強各種語(yǔ)言的互譯。比如上課開(kāi)始時(shí)的復習引入,讓學(xué)生用三種語(yǔ)言的表達,動(dòng)手實(shí)踐、定理探求過(guò)程以及定理描述也注重三種語(yǔ)言的表達,對例題的講解與分析也注意指導學(xué)生三種語(yǔ)言的表達。

  本節課對定理的探求與認識過(guò)程的設計始終貫徹直觀(guān)在先,感知在先,學(xué)自己身邊的數學(xué),感知生活中包涵的數學(xué)現象與數學(xué)原理,體驗數學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線(xiàn)面平行的例子,學(xué)生會(huì )舉出日光燈與天花板,電線(xiàn)桿與墻面,轉動(dòng)的門(mén)等等,同時(shí)老師的舉例也很貼進(jìn)生活,如老師直立時(shí)與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學(xué)生從中抽象概括出定理。

高中數學(xué)教學(xué)設計11

  教學(xué)目標:

 、僬莆諏岛瘮档男再|(zhì)。

 、趹脤岛瘮档男再|(zhì)可以解決:對數的大小比較,求復合函數的定義域、值域及單調性。

 、圩⒅睾瘮邓枷、等價(jià)轉化、分類(lèi)討論等思想的滲透,提高解題能力。

  教學(xué)重點(diǎn)與難點(diǎn):

  對數函數的性質(zhì)的應用。

  教學(xué)過(guò)程設計:

 、睆土曁釂(wèn):對數函數的概念及性質(zhì)。

 、查_(kāi)始正課

  1比較數的大小

  例1比較下列各組數的'大小。

 、舕oga5.1 ,loga5.9 (a>0,a≠1)

 、苐og0.50.6 ,logЛ0.5 ,lnЛ

  師:請同學(xué)們觀(guān)察一下⑴中這兩個(gè)對數有何特征?

  生:這兩個(gè)對數底相等。

  師:那么對于兩個(gè)底相等的對數如何比大小?

  生:可構造一個(gè)以a為底的對數函數,用對數函數的單調性比大小。

  師:對,請敘述一下這道題的解題過(guò)程。

  生:對數函數的單調性取決于底的大。寒0調遞減,所以loga5.1>loga5.9 ;當a>1時(shí),函數y=logax單調遞增,所以loga5.1

  板書(shū):

  解:Ⅰ)當0

  ∵5.1<5.9 loga5.1="">loga5.9

 、)當a>1時(shí),函數y=logax在(0,+∞)上是增函數

  ∵5.1<5.9 ∴loga5.1

  師:請同學(xué)們觀(guān)察一下⑵中這三個(gè)對數有何特征?

  生:這三個(gè)對數底、真數都不相等。

  師:那么對于這三個(gè)對數如何比大小?

  生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板書(shū):略。

  師:比較對數值的大小常用方法:

 、贅嬙鞂岛瘮,直接利用對數函數的單調性比大;

 、诮栌谩爸虚g量”間接比大;

 、劾脤岛瘮祱D象的位置關(guān)系來(lái)比大小。

  2函數的定義域,值域及單調性。

高中數學(xué)教學(xué)設計12

  重點(diǎn)難點(diǎn)教學(xué):

  1.正確理解映射的概念;

  2.函數相等的兩個(gè)條件;

  3.求函數的定義域和值域。

  教學(xué)過(guò)程:

  1.使學(xué)生熟練掌握函數的概念和映射的定義;

  2.使學(xué)生能夠根據已知條件求出函數的定義域和值域; 3.使學(xué)生掌握函數的三種表示方法。

  教學(xué)內容:

  1.函數的定義

  設A、B是兩個(gè)非空的數集,如果按照某種確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數fx和它對應,那么稱(chēng):fAB?為從集合A到集合B的一個(gè)函數(function),記作:,yf A其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{|}f A?叫值域(range)。顯然,值域是集合B的子集。

  注意:

 、 “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

 、诤瘮捣枴皔=f(x)”中的'f(x)表示與x對應的函數值,一個(gè)數,而不是f乘x.

  2.構成函數的三要素定義域、對應關(guān)系和值域。

  3、映射的定義

  設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:A→B為從集合A到集合B的一個(gè)映射。

  4.區間及寫(xiě)法:

  設a、b是兩個(gè)實(shí)數,且a

  (1)滿(mǎn)足不等式axb??的實(shí)數x的集合叫做閉區間,表示為[a,b];

  (2)滿(mǎn)足不等式axb??的實(shí)數x的集合叫做開(kāi)區間,表示為(a,b);

  5.函數的三種表示方法

 、俳馕龇

 、诹斜矸

 、蹐D像法

高中數學(xué)教學(xué)設計13

  前言

  為了更好地貫徹落實(shí)和科課程標準有關(guān)要求,促進(jìn)廣大教師學(xué)習現代教學(xué)理論,進(jìn)一步激發(fā)廣大教師課堂教學(xué)的創(chuàng )新意識,切實(shí)轉變教學(xué)觀(guān)念,積極探索新課程理念下的教與學(xué),有效解決教學(xué)實(shí)踐中存在的問(wèn)題,促進(jìn)課堂教學(xué)質(zhì)量的全面提高,在20xx年由福建省普通教育教學(xué)研究室組織,舉辦了一次教學(xué)設計大賽活動(dòng)。這次活動(dòng)數學(xué)學(xué)科高中組共收到有49篇教學(xué)設計文章。獲獎文章推薦評審專(zhuān)家組本著(zhù)公平、公正的原則,經(jīng)過(guò)認真的評審,全部作品均評出了相應的獎項;專(zhuān)家組還為獲得一、二等獎的作品撰寫(xiě)了點(diǎn)評。本稿收錄的作品全部是參加此次福建省教學(xué)設計競賽獲獎作者的文章。按照征文的規則,我們對入選作品的格式作了一些修飾,并經(jīng)過(guò)適當的整合,以饗讀者。

  在此還需要說(shuō)明的是,為了方便閱讀,獲獎文章的排序原則,并非按照獲獎名次的前后順序,而是按照高中數學(xué)新課程必修1—5的內容順序,進(jìn)行編排的。部分體現大綱教材內容的文章則排在后面。

  不管你獲得的是哪個(gè)級別的獎項,你們都可以有成就感,因為那是你們用心、用汗澆灌出的果實(shí),它記錄了你們奉獻于數學(xué)教育事業(yè)的心路歷程.書(shū)中每一篇的教學(xué)設計都耐人尋味,都能帶給我們許多遐想和啟迪.你們是優(yōu)秀的,在你們未來(lái)悠遠的職業(yè)里程中,只要努力,將有更多的輝煌在等待著(zhù)大家。謝謝你們!

  1、集合與函數概念實(shí)習作業(yè)

  一、教學(xué)內容分析

  《普通高中課程標準實(shí)驗教科書(shū)·數學(xué)(1)》(人教A版)第44頁(yè)。-----《實(shí)習作業(yè)》。本節課程體現數學(xué)文化的特色,學(xué)生通過(guò)了解函數的發(fā)展歷史進(jìn)一步感受數學(xué)的魅力。學(xué)生在自己動(dòng)手收集、整理資料信息的過(guò)程中,對函數的概念有更深刻的理解;感受新的學(xué)習方式帶給他們的學(xué)習數學(xué)的樂(lè )趣。

  二、學(xué)生學(xué)習情況分析

  該內容在《普通高中課程標準實(shí)驗教科書(shū)·數學(xué)(1)》(人教A版)第44頁(yè)。學(xué)生第一次完成《實(shí)習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗,所以需要教師精心設計,做好準備工作,充分體現教師的“導演”角色。特別在分組時(shí)注意學(xué)生的`合理搭配(成績(jì)的好壞、家庭有無(wú)電腦、男女生比例、口頭表達能力等),選題時(shí),各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習共享的過(guò)程中受到更多的數學(xué)文化的熏陶。

  三、設計思想

  《標準》強調數學(xué)文化的重要作用,體現數學(xué)的文化的價(jià)值。數學(xué)教育不僅應該幫助學(xué)生學(xué)習和掌握數學(xué)知識和技能,還應該有助于學(xué)生了解數學(xué)的價(jià)值。讓學(xué)生逐步了解數學(xué)的思想方法、理性精神,體會(huì )數學(xué)家的創(chuàng )新精神,以及數學(xué)文明的深刻內涵。

  四、教學(xué)目標

  1.了解函數概念的形成、發(fā)展的歷史以及在這個(gè)過(guò)程中起重大作用的歷史事件和人物;

  2.體驗合作學(xué)習的方式,通過(guò)合作學(xué)習品嘗分享獲得知識的快樂(lè );

  3.在合作形式的小組學(xué)習活動(dòng)中培養學(xué)生的領(lǐng)導意識、社會(huì )實(shí)踐技能和民主價(jià)值觀(guān)。

  五、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):了解函數在數學(xué)中的核心地位,以及在生活里的廣泛應用;

  難點(diǎn):培養學(xué)生合作交流的能力以及收集和處理信息的能力。

  六、教學(xué)過(guò)程設計

  【課堂準備】

  1.分組:4~6人為一個(gè)實(shí)習小組,確定一人為組長(cháng)。教師需要做好協(xié)調工作,確保每位學(xué)生都參加。

  2.選題:根據個(gè)人興趣初步確定實(shí)習作業(yè)的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。

高中數學(xué)教學(xué)設計14

  一、概述

  教材內容:等比數列的概念和通項公式的推導及簡(jiǎn)單應用 教材難點(diǎn):靈活應用等比數列及通項公式解決一般問(wèn)題 教材重點(diǎn):等比數列的概念和通項公式

  二、教學(xué)目標分析

  1. 知識目標

  1)

  2) 掌握等比數列的定義 理解等比數列的.通項公式及其推導

  2.能力目標

  1)學(xué)會(huì )通過(guò)實(shí)例歸納概念

  2)通過(guò)學(xué)習等比數列的通項公式及其推導學(xué)會(huì )歸納假設

  3)提高數學(xué)建模的能力

  3、情感目標:

  1)充分感受數列是反映現實(shí)生活的模型

  2)體會(huì )數學(xué)是來(lái)源于現實(shí)生活并應用于現實(shí)生活

  3)數學(xué)是豐富多彩的而不是枯燥無(wú)味的

  三、教學(xué)對象及學(xué)習需要分析

  1、 教學(xué)對象分析:

  1)高中生已經(jīng)有一定的學(xué)習能力,對各方面的知識有一定的基礎,理解能力較強。并掌握了函數及個(gè)別特殊函數的性質(zhì)及圖像,如指數函數。之前也剛學(xué)習了等差數列,在學(xué)習這一章節時(shí)可聯(lián)系以前所學(xué)的進(jìn)行引導教學(xué)。

  2)對歸納假設較弱,應加強這方面教學(xué)

  2、學(xué)習需要分析:

  四. 教學(xué)策略選擇與設計

  1.課前復習

  1)復習等差數列的概念及通向公式

  2)復習指數函數及其圖像和性質(zhì)

  2.情景導入

高中數學(xué)教學(xué)設計15

  一、教材分析

  本小節選自《普通高中課程標準數學(xué)教科書(shū)-數學(xué)必修(一)》(人教版)第二章基本初等函數(1)2.2.2對數函數及其性質(zhì)(第一課時(shí)),主要內容是學(xué)習對數函數的定義、圖象、性質(zhì)及初步應用。對數函數是繼指數函數之后的又一個(gè)重要初等函數,無(wú)論從知識或思想方法的角度對數函數與指數函數都有許多類(lèi)似之處。與指數函數相比,對數函數所涉及的知識更豐富、方法更靈活,能力要求也更高。學(xué)習對數函數是對指數函數知識和方法的鞏固、深化和提高,也為解決函數綜合問(wèn)題及其在實(shí)際上的應用奠定良好的基礎。雖然這個(gè)內容十分熟悉,但新教材做了一定的改動(dòng),如何設計能夠符合新課標理念,是人們十分關(guān)注的,正因如此,本人選擇這課題立求某些方面有所突破。

  二、學(xué)生學(xué)習情況分析

  剛從初中升入高一的學(xué)生,仍保留著(zhù)初中生許多學(xué)習特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數概念十分抽象,又以對數運算為基礎,同時(shí),初中函數教學(xué)要求降低,初中生運算能力有所下降,這雙重問(wèn)題增加了對數函數教學(xué)的難度。教師必須認識到這一點(diǎn),教學(xué)中要控制要求的拔高,關(guān)注學(xué)習過(guò)程。

  三、設計理念

  本節課以建構主義基本理論為指導,以新課標基本理念為依據進(jìn)行設計的,針對學(xué)生的學(xué)習背景,對數函數的教學(xué)首先要挖掘其知識背景貼近學(xué)生實(shí)際,其次,激發(fā)學(xué)生的學(xué)習熱情,把學(xué)習的主動(dòng)權交給學(xué)生,為他們提供自主探究、合作交流的.機會(huì ),確實(shí)改變學(xué)生的學(xué)習方式。

  四、教學(xué)目標

  1.通過(guò)具體實(shí)例,直觀(guān)了解對數函數模型所刻畫(huà)的數量關(guān)系,初步理解對數函數的概念,體會(huì )對數函數是一類(lèi)重要的函數模型;

  2.能借助計算器或計算機畫(huà)出具體對數函數的圖象,探索并了解對數函數的單調性與特殊點(diǎn);

  3.通過(guò)比較、對照的方法,引導學(xué)生結合圖象類(lèi)比指數函數,探索研究對數函數的性質(zhì),培養學(xué)生運用函數的觀(guān)點(diǎn)解決實(shí)際問(wèn)題。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn)是掌握對數函數的圖象和性質(zhì),難點(diǎn)是底數對對數函數值變化的影響.

  六、教學(xué)過(guò)程設計

  教學(xué)流程:背景材料→引出課題→函數圖象→函數性質(zhì)→問(wèn)題解決→歸納小結

  (一)熟悉背景、引入課題

  1.讓學(xué)生看材料:

  材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發(fā)現震驚世界,專(zhuān)家發(fā)掘西漢辛追遺尸時(shí),形體完整,全身潤澤,皮膚仍有彈性,關(guān)節還可以活動(dòng),骨質(zhì)比現在六十歲的正常人還好,是世界上發(fā)現的首例歷史悠久的濕尸。大家知道,世界發(fā)現的不腐之尸都是在干燥的環(huán)境風(fēng)干而成,譬如沙漠環(huán)境,這類(lèi)干尸雖然肌膚未腐,是因為干燥不利細菌繁殖,但關(guān)節和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤的環(huán)境中保存二千多年,而且關(guān)節可以活動(dòng)。人們最關(guān)注有兩個(gè)問(wèn)題,第一:怎么鑒定尸體的年份?第二:是什么環(huán)境使尸體未腐?其中第一個(gè)問(wèn)題與數學(xué)有關(guān)。

  圖4—1 (如圖4—1在長(cháng)沙馬王堆“沉睡”近2200年的古長(cháng)沙國丞相夫人辛追,日前奇跡般地“復活”了)那么,考古學(xué)家是怎么計算出古長(cháng)沙國丞相夫人辛追“沉睡”近2200年?上面已經(jīng)知道考古學(xué)家是通過(guò)提取尸體的殘留物碳14的殘留量p,利用t?logp 57302估算尸體出土的年代,不難發(fā)現:對每一個(gè)碳14的含量的取值,通過(guò)這個(gè)對應關(guān)系,生物死亡年數t都有唯一的值與之對應,從而t是p的函數;

  如圖4—2材料2(幻燈):某種細胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè)??,如果要求這種細胞經(jīng)過(guò)多少次分裂,大約可以得到細胞1萬(wàn)個(gè),10萬(wàn)個(gè)??,不難發(fā)現:分裂次數y就是要得到的細胞個(gè)數x的函數,即y?log2x;

  圖4—2 1.引導學(xué)生觀(guān)察這些函數的特征:含有對數符號,底數是常數,真數是變量,從而得出對數函數的定義:函數y?logax(a?0,且a?1)叫做對數函數,其中x是自變量,函數的定義域是(0,+∞).

  1對數函數的定義與指數函數類(lèi)似,都是形式定義,注意辨別.如:注意:○ x2對數函數對底數的限制:(a?0,都不是對數函數.○5y?2log2x,y?log5且a?1).

  3.根據對數函數定義填空;

  例1 (1)函數y=logax的定義域是___________ (其中a>0,a≠1) (2)函數y=loga(4-x)的定義域是___________ (其中a>0,a≠1)說(shuō)明:本例主要考察對數函數定義中底數和定義域的限制,加深對概念的理

  解,所以把教材中的解答題改為填空題,節省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復合函數的概念。

  [設計意圖:新課標強調“考慮到多數高中生的認知特點(diǎn),為了有助于他們對函數概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問(wèn)題入手”。因此,新課引入不是按舊教材從反函數出發(fā),而是選擇從兩個(gè)材料引出對數函數的概念,讓學(xué)生熟悉它的知識背景,初步感受對數函數是刻畫(huà)現實(shí)世界的又一重要數學(xué)模型。這樣處理,對數函數顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)] 2

  (二)嘗試畫(huà)圖、形成感知1.確定探究問(wèn)題

  教師:當我們知道對數函數的定義之后,緊接著(zhù)需要探討什么問(wèn)題?學(xué)生1:對數函數的圖象和性質(zhì)

  教師:你能類(lèi)比前面研究指數函數的思路,提出研究對數函數圖象和性質(zhì)的方

  法嗎?

  學(xué)生2:先畫(huà)圖象,再根據圖象得出性質(zhì)

  教師:畫(huà)對數函數的圖象是否象指數函數那樣也需要分類(lèi)?學(xué)生3:按a?1和0?a?1分類(lèi)討論

  教師:觀(guān)察圖象主要看哪幾個(gè)特征?

  學(xué)生4:從圖象的形狀、位置、升降、定點(diǎn)等角度去識圖

  教師:在明確了探究方向后,下面,按以下步驟共同探究對數函數的圖象:步驟一:(1)用描點(diǎn)法在同一坐標系中畫(huà)出下列對數函數的圖象y?log2xy?log1x 2 (2)用描點(diǎn)法在同一坐標系中畫(huà)出下列對數函數的圖象y?log3xy?log1x 3步驟二:觀(guān)察對數函數y?log2x、y?log3x與y?log1x、y?log1x的圖象特23征,看看它們有那些異同點(diǎn)。

  步驟三:利用計算器或計算機,選取底數a(a?0,且a?1)的若干個(gè)不同的值,

  在同一平面直角坐標系中作出相應對數函數的圖象。觀(guān)察圖象,它們有哪些共同特征?

  步驟四:規納出能體現對數函數的代表性圖象

  步驟五:作指數函數與對數函數圖象的比較2.學(xué)生探究成果

  (1)如圖4—3、4—4較為熟練地用描點(diǎn)法畫(huà)出下列對數函數y?log2x、 y?log1x、 y?log3x、y?log1x的圖象23圖4—3圖4—4 (2)如圖4—5學(xué)生選取底數a=1/4、1/5、1/6、1/10、4、5、6、10,并推薦幾位代表上臺演示‘幾何畫(huà)板’,得到相應對數函數的圖象。由于學(xué)生自己動(dòng)手,加上‘幾何畫(huà)板’的強大作圖功能,學(xué)生非常清楚地看到了底數a是如何影響函數y?logax(a?0,且a?1)圖象的變化。

  圖4—5 (3)有了這種畫(huà)圖感知的過(guò)程以及學(xué)習指數函數的經(jīng)驗,學(xué)生很明確y = loga x (a>1)、y = loga x (0(中部)

【高中數學(xué)教學(xué)設計】相關(guān)文章:

高中數學(xué)教學(xué)設計06-09

高中數學(xué)教學(xué)設計01-17

高中數學(xué)教學(xué)設計03-25

高中數學(xué)概念教學(xué)設計07-14

2022高中數學(xué)教學(xué)設計高三數學(xué)教學(xué)設計12-22

高中數學(xué)教學(xué)設計精選15篇03-28

高中數學(xué)教學(xué)設計15篇07-01

高中數學(xué)教學(xué)設計(15篇)12-30

高中數學(xué)的教學(xué)設計5篇10-24

高中數學(xué)教學(xué)設計(精選10篇)07-21