小學(xué)數學(xué)學(xué)習思考方法
學(xué)習方法,并沒(méi)有統一的規定,因個(gè)人條件不同,時(shí)代不同,環(huán)境不同,選取的方法也不同。下面和小編一起來(lái)看小學(xué)數學(xué)學(xué)習思考方法,希望有所幫助!
小學(xué)數學(xué)學(xué)習思考方法 1
1、對應思想方法
對應是人們對兩個(gè)集合因素之間的聯(lián)系的一種思想方法,小學(xué)數學(xué)一般是一一對應的直觀(guān)圖表,并以此引出函數思想。如直線(xiàn)上的點(diǎn)(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問(wèn)題作出某種假設,然后按照題中的已知條件進(jìn)行推算,根據數量出現的矛盾,加以適當調整,最后找到正確答案的一種思想方法。假設思想是一種有意義的想象思維,掌握之后可以使要解決的問(wèn)題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學(xué)中常見(jiàn)的思想方法之一,也是促進(jìn)學(xué)生思維發(fā)展的手段。在教學(xué)分數應用題中,教師善于引導學(xué)生比較題中已知和未知數量變化前后的情況,可以幫助學(xué)生較快地找到解題途徑。
4、符號化思想方法
用符號化的語(yǔ)言(包括字母、數字、圖形和各種特定的符號)來(lái)描述數學(xué)內容,這就是符號思想。如數學(xué)中各種數量關(guān)系,量的變化及量與量之間進(jìn)行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式等。
5、類(lèi)比思想方法
類(lèi)比思想是指依兩類(lèi)數學(xué)對象的相似性,有可能將已知的一類(lèi)數學(xué)對象的性質(zhì)遷移到另一類(lèi)數學(xué)對象上去的思想。如加法交換律和乘法交換律、長(cháng)方形的面積公式、平行四邊形面積公式和三角形面積公式。類(lèi)比思想不僅使數學(xué)知識容易理解,而且使公式的記憶變得順水推舟般自然和簡(jiǎn)潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲x1/乙。
7、分類(lèi)思想方法
分類(lèi)思想方法不是數學(xué)獨有的方法,數學(xué)的分類(lèi)思想方法體現對數學(xué)對象的分類(lèi)及其分類(lèi)的標準。如自然數的分類(lèi),若按能否被2整除分奇數和偶數;按約數的個(gè)數分質(zhì)數和合數。又如三角形可以按邊分,也可以按角分。不同的分類(lèi)標準就會(huì )有不同的分類(lèi)結果,從而產(chǎn)生新的概念。對數學(xué)對象的正確、合理分類(lèi)取決于分類(lèi)標準的正確、合理性,數學(xué)知識的分類(lèi)有助于學(xué)生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語(yǔ)言、運算、圖形等來(lái)解決數學(xué)問(wèn)題或非純數學(xué)問(wèn)題的思想方法。小學(xué)采用直觀(guān)手段,利用圖形和實(shí)物滲透集合思想。在講述公約數和公倍數時(shí)采用了交集的思想方法。
9、數形結合思想方法
數和形是數學(xué)研究的兩個(gè)主要對象,數離不開(kāi)形,形離不開(kāi)數,一方面抽象的數學(xué)概念,復雜的數量關(guān)系,借助圖形使之直觀(guān)化、形象化、簡(jiǎn)單化。另一方面復雜的形體可以用簡(jiǎn)單的數量關(guān)系表示。在解應用題中常常借助線(xiàn)段圖的直觀(guān)幫助分析數量關(guān)系。
10、統計思想方法
小學(xué)數學(xué)中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。
11、極限思想方法
事物是從量變到質(zhì)變的,極限方法的實(shí)質(zhì)正是通過(guò)量變的無(wú)限過(guò)程達到質(zhì)變。在講“圓的面積和周長(cháng)”時(shí),“化圓為方”“化曲為直”的極限分割思路,在觀(guān)察有限分割的基礎上想象它們的極限狀態(tài),這樣不僅使學(xué)生掌握公式還能從曲與直的矛盾轉化中萌發(fā)了無(wú)限逼近的極限思想。
12、代換思想方法
它是方程解法的重要原理,解題時(shí)可將某個(gè)條件用別的條件進(jìn)行代換。如學(xué)校買(mǎi)了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價(jià)錢(qián)正好相等,桌子和椅子的單價(jià)各是多少?
13、可逆思想方法
它是邏輯思維中的基本思想,當順向思維難于解答時(shí),可以從條件或問(wèn)題思維尋求解題思路的方法,有時(shí)可以借線(xiàn)段圖逆推。如一輛汽車(chē)從甲地開(kāi)往乙地,第一小時(shí)行了全程的1/7,第二小時(shí)比第一小時(shí)多行了16千米,還有94千米,求甲乙之距離。
14、化歸思維方法
把有可能解決的或未解決的問(wèn)題,通過(guò)轉化過(guò)程,歸結為一類(lèi)以便解決可較易解決的問(wèn)題,以求得解決,這就是“化歸”。而數學(xué)知識聯(lián)系緊密,新知識往往是舊知識的引申和擴展。讓學(xué)生面對新知會(huì )用化歸思想方法去思考問(wèn)題,對獨立獲得新知能力的提高無(wú)疑是有很大幫助;瘹w的方向應該是化隱為顯、化繁為簡(jiǎn)、化難為易、化未知為已知。
15、變中抓不變的思想方法
在紛繁復雜的變化中如何把握數量關(guān)系,抓不變的量為突破口,往往問(wèn)了就迎刃而解。如:科技書(shū)和文藝書(shū)共630本,其中科技書(shū)20%,后來(lái)又買(mǎi)來(lái)一些科技書(shū),這時(shí)科技書(shū)占30%,又買(mǎi)來(lái)科技書(shū)多少本?
16、數學(xué)模型思想方法
所謂數學(xué)模型思想是指對于現實(shí)世界的某一特定對象,從它特定的生活原型出發(fā),充分運用觀(guān)察、實(shí)驗、操作、比較、分析綜合概括等所謂過(guò)程,得到簡(jiǎn)化和假設,它是把生活中實(shí)際問(wèn)題轉化為數學(xué)問(wèn)題模型的一種思想方法。培養學(xué)生用數學(xué)的眼光認識和處理周?chē)挛锘驍祵W(xué)問(wèn)題乃數學(xué)的最高境界,也是學(xué)生高數學(xué)素養所追求的目標。
17、整體思想方法
對數學(xué)問(wèn)題的觀(guān)察和分析從宏觀(guān)和大處著(zhù)手,整體把握化零為整,往往不失為一種更便捷更省時(shí)的方法。
小學(xué)數學(xué)學(xué)習思考方法 2
一、學(xué)會(huì )主動(dòng)預習
新知識在未講解之前,認真閱讀教材,養成主動(dòng)預習的習慣,是獲得數學(xué)知識的重要手段。因此,培養自學(xué)能力,在老師的引導下學(xué)會(huì )看書(shū),帶著(zhù)老師精心設計的思考題去預習。
如自學(xué)例題時(shí),要弄清例題講的什么內容,告訴了哪些條件,求什么,書(shū)上怎么解答的,為什么要這樣解答,還有沒(méi)有新的解法,解題步驟是怎樣的。抓住這些重要問(wèn)題,動(dòng)腦思考,步步深入,學(xué)會(huì )運用已有的知識去獨立探究新的知識。
有些家長(cháng)頭疼孩子上課效率很差;這其中很關(guān)鍵的原因是沒(méi)有做好預習;自然也就做不到有的放矢;
二、聽(tīng)課不要僅僅是聽(tīng),重要的是要思考
一些學(xué)生對公式、性質(zhì)、法則等背的挺熟,但遇到實(shí)際問(wèn)題時(shí),卻又無(wú)從下手,不知如何應用所學(xué)的知識去解答問(wèn)題。如有這樣一道題讓學(xué)生解“把一個(gè)長(cháng)方體的高去掉2厘米后成為一個(gè)正方體,他的表面積減少了48平方厘米,這個(gè)正方體的體積是多少?”
同學(xué)們對求體積的公式雖記得很熟,但由于該題涉及知識面廣,許多同學(xué)理不出解題思路,這需要學(xué)生在老師的引導下逐漸掌握解題時(shí)的思考方法。這道題從單位上講,涉及到長(cháng)度單位、面積單位;從圖形上講,涉及到長(cháng)方形、正方形、長(cháng)方體、正方體;
從圖形變化關(guān)系講:長(cháng)方形→正方形;從思維推理上講:長(cháng)方體→減少一部分底面是正方形的長(cháng)方體→減少部分四個(gè)面面積相等→求一個(gè)面的面積→求出長(cháng)方形的長(cháng)(即正方形的一個(gè)棱長(cháng))→正方體的體積;
經(jīng)老師啟發(fā),學(xué)生分析后,學(xué)生根據其思路(可畫(huà)出圖形)進(jìn)行解答。有的.學(xué)生很快解答出來(lái):設原長(cháng)方體的底面長(cháng)為X,則2Xx4=48得:X=6(即正方體的棱長(cháng)),這樣得出正方體的體積為:6x6x6=216(立方厘米)。
所以說(shuō),在課堂上,老師最大的作用是:?jiǎn)l(fā);孩子在課堂上要緊跟老師的思路,靠著(zhù)老師的引導,去思考解題的思路;答案真的不重要;重要的是方法!
三、及時(shí)總結解題規律
解答數學(xué)問(wèn)題總的講是有規律可循的。在解題時(shí),要注意總結解題規律,在解決每一道練習題后,要注意回顧以下問(wèn)題:
(1)本題最重要的特點(diǎn)是什么?
(2)解本題用了哪些基本知識與基本圖形?
(3)本題你是怎樣觀(guān)察、聯(lián)想、變換來(lái)實(shí)現轉化的?
(4)解本題用了哪些數學(xué)思想、方法?
(5)解本題最關(guān)鍵的一步在那里?
(6)你做過(guò)與本題類(lèi)似的題目嗎?在解法、思路上有什么異同?
(7)本題你能發(fā)現幾種解法?其中哪一種最優(yōu)?那種解法是特殊技巧?你能總結在什么情況下采用嗎?
把這一連串的問(wèn)題貫穿于解題各環(huán)節中,逐步完善,持之以恒,孩子解題的心理穩定性和應變能力就可以不斷提高,思維能力就會(huì )得到鍛煉和發(fā)展
四、拓寬解題思路
在教學(xué)中老師會(huì )經(jīng)常給學(xué)生設置疑點(diǎn),提出問(wèn)題,啟發(fā)學(xué)生多思多想,這時(shí)學(xué)生要積極思考,拓寬思路,以使思維的廣闊性得到較好的發(fā)展。
如:修一條長(cháng)2400米的水渠,5天修了它的20%,照這樣計算剩下的還需幾天修完?根據工作總量、工作效率、工作時(shí)間三者的關(guān)系,學(xué)生可以列出下列算式:(1)2400÷(2400x20%÷5)-5=20(天)(2)2400x(1-20%)÷(2400x20%÷)=20(天)。
教師啟發(fā)學(xué)生,提問(wèn):“修完它的20%用5天,還剩下(1—20%要用多少天修完呢?”學(xué)生很快想到倍比的方法列出:(3)5x(1-20%)÷20%=20(天)。
如果從“已知一個(gè)數的幾分之幾是多少,求這個(gè)數”的方法去思考,又可得出下列解法:5÷20%-5=20(天)。再啟發(fā)學(xué)生,能否用比例知識解答?
學(xué)生又會(huì )想出:(6)20%∶(1-20%)=5∶X(設剩下的用X天修完)。這樣啟發(fā)學(xué)生多思,溝通了知識間的縱橫關(guān)系,變換解題方法,拓寬學(xué)生的解題思路,培養學(xué)生思維的靈活性。
五、充分發(fā)揮錯題本的作用
學(xué)生每人準備一個(gè)“記錯本”,把自己平時(shí)作業(yè)、單元測試或期中、期末考試中出現的錯誤記錄下來(lái),并注明出錯原因,做到有錯必改,以后不再犯類(lèi)似的錯誤。在實(shí)際的學(xué)習中,要經(jīng)常查看這個(gè)本子,做到心中有數。
有很多學(xué)霸都是因為積極使用了錯題本,而考取了高分;
六、“1x5”學(xué)習法
做一道題要有做一道題的收獲。反對搞題海戰術(shù)。
做一道題,引導學(xué)生從五個(gè)方面思考:
、龠@道題考查的知識點(diǎn)是什么。
、跒槭裁匆@樣做。
、畚沂侨绾蜗氲降。
、苓可以怎樣做,有其它方法嗎?
、菀活}多變看看它有幾種變化的形式,把自己當作一個(gè)出題者,領(lǐng)會(huì )出題人的意圖,看看能不能有其他的解題思路怎么樣。
七、關(guān)于寫(xiě)作業(yè)
在作業(yè)過(guò)程中存在求速的心理狀態(tài),審題時(shí)走馬觀(guān)花,粗心大意,對于做錯的題目上,引導學(xué)生形成錯題分析法,而分析的目的在于讓學(xué)生充分認識到由于不正確的閱讀導致的解題錯誤,從而形成“我要正確閱讀”的內部動(dòng)機,引導學(xué)生仔細審題,真正弄懂題意。
【小學(xué)數學(xué)學(xué)習思考方法】相關(guān)文章:
小學(xué)數學(xué)的學(xué)習方法總結01-05
小學(xué)數學(xué)的學(xué)習方法總結11-22
小學(xué)奧數學(xué)習方法12-19
小學(xué)數學(xué)學(xué)習方法總結01-05